1.G.Yohe „Exercises to Varian textbook", p.257-262

Consider the following figure. Argue that I and III are stable equilibria, but that II is an unstable equilibrium.

Consumer B

Consumer A
2. H.Varian "Microeconomic Analyses", p.336, 17.3

Consider another figure. Explain why x* is a Pareto efficient allocation. Explain why x* is not a competitive equilibrium. Show another example of nonexistence of Walrasian equilibrium

3. H.Varian "Microeconomic Analyses", p.337, 17.9

Consider an economy with 15 consumers and 2 goods. Consumer 3 has a CobbDouglass utility function $U_{3}\left(x_{3}{ }^{1}, x_{3}{ }^{2}\right)=\ln x_{3}{ }^{1}+\ln x_{3}{ }^{2}$. At a certain Pareto efficient allocation x^{*}, consumer 3 holds (10,5). What are the competitive prices that support the allocation x *?
4. Mas-Colell, "Microeconomic Theory", p.542, 15.B.10.c

In a two-consumer, two commodity pure exchange economy with continuous, strictly convex and strongly monotone preferences, consider the comparative statistics of the welfare of consumer 1 with changes in the initial endowment ω_{1} $=\left(\omega_{11}, \omega_{21}\right)$ and $\omega_{2}=\left(\omega_{12}, \omega_{22}\right)$. Suppose that the increase in resources of consumer 1 constitute a small transfer from consumer 2, that is $\omega_{1}{ }^{`}=\omega_{1}+z$ and $\omega_{2}{ }^{`}=\omega_{2}-\mathrm{z}$ with $z \geq 0$. Show that it is possible for the utility of consumer 1 to decrease (this is called the transfer paradox).
5. Mas-Colell, "Microeconomic Theory", p.544, 15.D. 7

Suppose there are two output goods and two factors. The production function for the two outputs are $f_{1}\left(z_{11}, z_{21}\right)=2 z_{11}^{1 / 2}+z_{21}^{1 / 2}$ and $f_{2}\left(z_{12}, z_{22}\right)=z_{12}{ }^{1 / 2}+2 z_{22}{ }^{1 / 2}$. The international prices for these goods are $p=(1,1)$. Firms are price takers and maximize profits. The total factor endowments are $\mathrm{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$. Consumers have no taste for the consumption of factors of production. Derive the equilibrium factor allocation $\left(\left(\mathrm{z}_{11}{ }^{*}, \mathrm{z}_{21}{ }^{*}\right),\left(\mathrm{z}_{12}{ }^{*}, \mathrm{z}_{22}{ }^{*}\right)\right)$ and the equilibrium factor prices $\left(\mathrm{w}_{1}{ }^{*}, \mathrm{w}_{2}{ }^{*}\right)$ as a function of $\left(z_{1}, z_{2}\right)$.

